Mathematical structures in logic
 ExERCISE CLASS 2

Heyting algebras, Boolean algebras

February 13, 2018

1. Let A be a Boolean algebra. Show that $a \wedge b=\neg(\neg a \vee \neg b)$ and $a \vee b=\neg(\neg a \wedge \neg b)$.
2. We know that the lattice $(\operatorname{Fin}(\mathbb{N}) \cup\{\mathbb{N}\}, \subseteq)$ of finite subsets of \mathbb{N} (together with \mathbb{N}) is a complete bounded distributive lattice. Is it a Heyting algebra?
3. Let A_{1}, A_{2} and A_{3} be the following posets

(a) Convince yourself that A_{1}, A_{2} and A_{3} are all Heyting algebras.
(b) Identify the joins and the pseudo-complements in A_{1}, A_{2} and A_{3}.
(c) Is A_{1} isomorphic to a bounded sublattice of A_{2} or A_{3} ? Is it isomorphic to a Heyting subalgebra of A_{2} and A_{3} ?
4. (Atoms and co-atoms) Recall that, if (L, \leq) is a bounded lattice, $a \in L$ is called an atom if $b<a$ implies $b=0$ and a coatom if $a<b$ implies $b=1$.
(a) Describe atoms and co-atoms on a Boolean algebra of the form $\mathcal{P}(X)$.
(b) Show that in every Boolean algebra, if a is an atom, then $\neg a$ is a co-atom.
(c) Find a Heyting algebra A with an atom a such that $\neg a$ is not a co-atom
5. Show that not every bounded distributive lattice is isomorphic to the lattice of upsets of some poset.
6. We abbreviate $a \rightarrow 0$ with $\neg a$. Show that in every Heyting algebra
(a) $a \wedge \neg a=0$ but not necessarily $a \vee \neg a=1$;
(b) $a \leq b$ iff $a \rightarrow b=1$;
(c) $a \leq \neg \neg a$;
(d) $\neg a \wedge \neg b=\neg(a \vee b)$;
(e) $\neg a \vee \neg b \leq \neg(a \wedge b)$ but not necessarily $\neg(a \wedge b) \leq \neg a \vee \neg b$;
(f) $a \rightarrow(b \rightarrow c)=(a \wedge b) \rightarrow c$;
(g) $b \leq c$ implies $a \rightarrow b \leq a \rightarrow c$;
(h) $b \leq c$ implies $c \rightarrow a \leq b \rightarrow a$.
7. A topological space is a pair (X, τ) where X is a set and $\tau \subseteq \mathcal{P}(X)$ is a collection of subsets of X such that
i. $\varnothing \in \tau$ and $X \in \tau$;
ii. If $U, V \in \tau$, then $U \cap V \in \tau$;
iii. If $\sigma \subseteq \tau$, then $\bigcup \sigma \in \tau$.

Given $P \subseteq X$, we can define the interior of P as $\operatorname{Int} P=\bigcup\{U \in \tau: U \subseteq P\}$.
(a) Prove that (τ, \subseteq) is a Heyting algebra.
(b) Characterise $\bigvee \sigma$ and $\bigwedge \sigma$ for $\sigma \subseteq \tau$.

Additional exercises

8. Let A_{2} and A_{3} be as in exercise 1 .
(a) Is A_{2} isomorphic to a bounded sublattice of A_{3} ? Is it isomorphic to a Heyting subalgebra of A_{3} ?
(b) Is there a surjective bounded lattice homomorphism from A_{3} to A_{2} ? Is there a surjective Heyting algebra homomorphism from A_{3} to A_{2} ?
9. Let L be a bounded distributive lattice. Show that there is a 1 -to- 1 correspondence between pairs of complemented elements of L (i.e. pairs $\langle a, b\rangle \in L^{2}$ such that $a \wedge b=0$ and $a \vee b=1$) and decompositions of the form $L \simeq L_{1} \times L_{2}$ where L_{1} and L_{2} are bounded distributive lattices. (Hint: Try to understand first what this means for powerset lattices.)
10. For people who know some category theory: Given a poset (P, \leq) we can see it as a category having P as objects and there is a morphism from p to q iff $p \leq q$. Try to connect the notions of lattice theory that we encountered so far (suprema, infima, bounds, Heyting implications, complements, ...) to categorical structure (such as products, coproducts, ...).
